Error! Use the Home tab to apply Überschrift 1 to the text that you want to appear here.

SDO commands

[bookmark: _Toc427636447]
	Application note

	CM CANopen

	Description of the CANopen demo

	

HMS Technology Center Ravensburg GmbH
Helmut-Vetter-Straße 2
88213 Ravensburg
Germany

Tel.: +49 751 56146-0
Fax: +49 751 56146-29
Internet: www.hms-networks.de
E-Mail: info-ravensburg@hms-networks.de

	

	Support
In case of unsolvable problems with this product or other HMS products please contact HMS in written form:

Fax: +49 751 56146-29
E-Mail: support@ixxat.de

Further international support contacts can be found on our webpage www.hms-networks.de

	

	Copyright
Duplication (copying, printing, microfilm or other forms) and the electronic distribution of this document is only allowed with explicit permission of HMS Technology Center Ravensburg GmbH. HMS Technology Center Ravensburg GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement do apply. All rights are reserved.

	

	Registered trademarks
All trademarks mentioned in this document and where applicable third party registered are absolutely subject to the conditions of each valid label right and the rights of particular registered proprietor. The absence of identification of a trademark does not automatically mean that it is not protected by trademark law.

	

	Document number: X.XX.XXXX.XXXXX
Version: 1.0

1	Introduction	5
1.1	Restrictions	5
1.2	Related Documents	6
2	Hardware identifier of the CM module	7
3	Overview of the CANopen demo	9
4	Exchange of process image data	11
4.1	General hints	11
4.2	Get Process Data In	13
4.2.1	Layout of the Process Image	14
4.2.2	Hardware Configuration of the CM module in TIA Portal	17
4.2.3	Description of the used structure	17
4.2.4	Upload and update of the process image input data	18
4.2.4.1	ProcessImageData [DB14]	18
4.2.4.2	GetProcessDataIn [FC1]	19
4.2.4.3	UpdatePIInData_PLC [FC2]	20
4.2.5	Adaption of the demo to the user`s application	20
4.3	Set Process Data Out	21
4.3.1	Layout of the Process Image	22
4.3.2	Hardware Configuration of the CM module in TIA Portal	24
4.3.3	Description of the used structure	25
4.3.4	Download of the process image output data	25
4.3.4.1	ProcessImageData [DB14]	26
4.3.4.2	SetProcessDataOut [FC3]	26
4.3.4.3	UpdatePIOutData_CM [FC4]	28
4.3.5	Adaption of the demo to the user`s application	28
5	SDO commands	29
5.1	General hint	29
5.1.1	Processing of a SDO command	29
5.1.2	Data format	30
5.1.3	Parallel processed SDO commands	33
5.1.4	Application note “CANopen manager” mode	34
5.1.5	Restrictions “CANopen slave” mode	34
5.2	SDO Demo	36
5.3	SDO Read	37
5.3.1	Description of ReadSDO [FB104]	38
5.3.2	Structure: "Ctrl_CM_CANopen".ReadSDO	40
5.3.3	SDORead_Request [FC6]	41
5.3.4	SDORead_InterpretReadData [FC7]	42
5.4	SDO Write	43
5.4.1	Description of WriteSDO [FB105]	44
5.4.2	Structure: "Ctrl_CM_CANopen".WriteSDO	46
5.4.3	SDOWrite_Request [FC5]	47
5.4.4	SDOWrite_InterpretResult [FC8]	48
6	Get Node & Network Status	49
6.1.1	Structure: "Ctrl_CM_CANopen".GetNNStatus	49
6.1.2	GetNodeNetworkStatus [FC18]	50
6.1.3	AnalyseNodeNetworkStatus [FC14]	51
6.1.4	Discussion of the diagnostic information	52
6.1.4.1	General hints	52
6.1.4.2	Get Node & Network Status: Message error	57
6.1.4.3	Get Node & Network Status: CANopen Module mode	58
6.1.4.4	Get Node & Network Status: Error flags (module)	58
6.1.4.5	Get Node & Network Status: Error flags (network)	60
6.1.4.6	Get Node & Network Status: CANopen Node Status	63
6.1.4.7	Get Node & Network Status: Network status	64
7	CM CANopen Configuration Studio	68
7.1	Exchange of process image data	68
7.2	“Device Parameters” tool window	70
8	Status LEDs	72
8.1	Indicator states and flash rates	73

Content

Content

	Copyright IXXAT Automation GmbH
	4
	Produktname-Handbuch, Version

	Copyright HMS Technology Center Ravensburg GmbH
	4
	CM CANopen, CANopen Application, V1.0

[bookmark: _Toc481655747]Introduction
The demo explains how to communicate with one CM CANopen running in CANopen mode to exchange process image data, to process SDO Read / Write and to process Get Node & Network Status.

The demo must be enhanced if the PLC shall communicate with several CM CANopen modules running in CANopen mode.

Hint: SDO FBs
· These FBs have been revised to provide more performance
· The interface of the CANopen interface function blocks differs from the description in the user manual of the CM CANopen
· The actual interface is described
· for ReadSDO FB by chapter 5.3.1
· for WriteSDO FB by chapter 5.4.1

Replacement of the PLC:
· if the PLC cannot be replaced directly:
replace the PLC of the demo by a PLC similar to the finally used one
· afterwards replace this PLC by the actual used PLC

[bookmark: _Toc481655748]Restrictions

The CM CANopen supports CAN 2.0A (11 bit CAN identifier) but it does not support CAN 2.0B (29 bit CAN identifier).

“CANopen Manager auto configuration” in “Module parameters” of the CM CANopen module in TIA Portal must not be activated:
· the mechanism has not been defined to inform the application about the auto generated configuration

The CM CANopen does not support bit mapping.
· contact support if it is possible that the single bits can be mapped in bytes

[bookmark: _Toc481655749]Related Documents

	Document name
	Author

	CM CANopen - User Manual.pdf
Rev 1.00
	HMS

	
	

	
	

	
	

[bookmark: _Toc481655750]Hardware identifier of the CM module
The hardware address / hardware identifier of the CM CANopen module that is passed to the ID input of
· the used RDREC instance to process “Get Process Data In”
· the used RDREC instance to process “Get Node & Network Status”
· the used WRREC instance to process “Set Process Data Out”
· the instances of ReadSDO FB / WriteSDO FB
can be read in the hardware configuration of the CM CANopen module in TIA Portal:

[image:]
Alternatively the “System constant” can be used

[image:]

[bookmark: _Toc481655751]Overview of the CANopen demo

Description of OB 1:
Network 1:
		processing of a “Get Node & Network Status” command

Network 2:
		upload of process image input data

Network 3:
		download of process image output data

Network 4 - 6:
		processing of a SDO Read command

Network 4: 	initiate and request the processing of a SDO Read
 		command
Network 5: 	run the requested SDO Read command
Network 6: 	analyze the result of the processed SDO Read command
 	and interpret the data

Network 7 - 9:
		processing of a SDO Write command

Network 7: 	initiate and request the processing of a SDO Write
 		command
Network 8: 	run the requested SDO Write command
Network 9: 	analyze the result of the processed SDO Write command

Description of OB 100:
OB100 initializes all basic variables that are necessary to communicate with the CM CANopen.
· Hardware identifier of the CM module in TIA Portal
		"Ctrl_CM_CANopen".HW_ID

see:
	Device configuration / CM module / General / CANopen interface
	 / Hardware identifier

· number of data bytes that shall be uploaded by “Get Process Image Data In”
		“CANopenProcessImage“.ByteSize_PIInput_CANopen

Its value is passed to the input MLEN of RDREC that is used to upload the process image input data
see also chapter 4.2.1

· number of data bytes that shall be written by “Set Process Image Data Out”
		“CANopenProcessImage“.ByteSize_PIOutput_CANopen

Its value is passed to the input LEN of WRREC that is used to download the process image output data
see also chapter 4.3.1

[bookmark: _Toc481655752]Exchange of process image data
[bookmark: _Toc481655753]General hints

Exchange of process image data between the PLC and the CM CANopen:
· The process image data are not exchanged via the process image area of the PLC.
· The process image of the CM CANopen is organized as a byte array which is read by RDREC / written by WRREC.
· WRREC / RDREC request the transmission of an asynchronous telegram:
· the transmission of the asynchronous telegram is not deterministic
· it must be avoided that the read / written data will be corrupted
· it is recommended to differentiate between the data that are exchanged with the CM CANopen and the data that are used by the application to control the process

Conditions: exchange of process image data with the CANopen network:
· The CM CANopen neither receives nor transmits PDOs if it is not operational.
· There is an additional condition for the CM CANopen running in CANopen Manager mode:
· minimum one slave device must be operational
otherwise the CM CANopen will not transmit any TPDO
· the information which slaves are operational is provided by
· “Get Node & network Status”
	see 	chapter 8.1.4 Get Node & Network Status
 		of the CM CANopen manual
· Index 5004h
	see 	chapter 7.3 Manufacturer Specific Objects
 		of the CM CANopen manual

Default value of the process image:
· Each byte of the input and output area is initialized with 0 after power on.

Data format of the exchanged data between the PLC and the CM CANopen:
· The data format is little endian (CANopen format)
	least significant byte at low address
	most significant byte at high address
· whereas the data format of the PLC is big endian
	most significant byte at low address
	least significant byte at high address
· 16 bit values / 32 bit values must be swapped
· hint: REAL
REAL variables requires an individual conversion
· SWAP(real value) does not return the correct value sometimes
· suggested method:
1. convert read data to DWORD
2. swap DWORD value
3. convert DWORD value to REAL

Performance:
The best performance is reached
· process image input
· CANopen input data size = MLEN = actual size
· CANopen input data size:
	=> hardware configuration of the CM module in TIA Portal
	 => Module parameters
		=> CANopen input data size
· MLEN:
	=> MLEN input of RDREC which is used to upload the
 	 process image input
· actual size:
	=> byte size of the process image input that covers all
 	 mapped data
	 see CM CANopen Configuration Studio:
 			“Process Image”: Direction: IN
· more details are provided by:
	chapter 4.2.1

	
· process image output
· CANopen output data size = LEN = actual size
· CANopen output data size:
	=> hardware configuration of the CM module in TIA Portal
	 => Module parameters
		=> CANopen output data size
· LEN:
	=> LEN input of WRREC which is used to upload the
 	 process image output
· actual size:
	=> byte size of the process image output that covers all
 	 mapped data
	 see CM CANopen Configuration Studio:
 			“Process Image”: Direction: OUT
· more details are provided by:
	chapter 4.3.1		

[bookmark: _Toc481655754]Get Process Data In

Program group "Get Process Data In" provides all functionality to process the upload of the process image input from the CM CANopen and to update the data for the PLC.
The process image input data are handled by:
· "CANopenProcessImage".CM_PIInput
· the read data are copied to this area by RDREC
· its data format is little endian
· "CANopenProcessImage".PLC_PIInput
· this area provides the read and converted data for the application
· its data format is big endian
· "CANopenProcessImage".ByteSize_PIInput_CANopen
· byte size of "CANopenProcessImage".CM_PIInput

Hint:
· it is recommended to differentiate between the uploaded data and the data of the application to avoid inconsistencies caused by the asynchronous upload of the process image

Hint: Implementation
· The implementation of “Get Process Data In” by the CANopen demo is based on the layout of the “Process Image” of the demo project of the CM CANopen Configuration Studio.
[bookmark: _Ref477797358][bookmark: _Ref477797479][bookmark: _Toc481655755]Layout of the Process Image

Layout of the “Process Image” in CM CANopen Configuration Studio:

[image:]

Layout of the “Process Image” – Direction: IN – how it is managed

	Byte Array:
Offset
	Address
	Object
	Byte Size
	Structure
used by the PLC
	

	
	
	Node-ID
	Index
	Sub-Index
	
	
	

	0
	00000000
	1
	1001
	00
	1
	N1_ErrorRegister
	

	1
	00000001
	1
	6000
	01
	1
	N1_DigitalIn_1
	

	2
	00000002
	1
	6000
	02
	1
	N1_DigitalIn_2
	

	3
	00000003
	2
	1001
	00
	1
	N2_ErrorRegister
	

	4
	00000004
	2
	6000
	01
	1
	N2_DigitalIn_1
	

	5
	unused
	1
	Dummy_Byte5
	

	6
	00000006
	1
	6401
	01
	2
	N1_AnalogIn_1
	

	7
	
	
	
	
	
	
	

	8
	00000008
	2
	6401
	01
	2
	N2_AnalogIn_1
	

	9
	
	
	
	
	
	
	

	10
	unused
	1
	Dummy_Byte10
	

	11
	unused
	1
	Dummy_Byte11
	

	12
	0000000C
	1
	2000
	00
	4
	N1_StatusRegister
	

	13
	
	
	
	
	
	
	

	14
	
	
	
	
	
	
	

	15
	
	
	
	
	
	
	

	16
	00000010
	2
	6404
	1
	4
	N2_AnalogInFloat_1
	

	17
	
	
	
	
	
	
	

	18
	
	
	
	
	
	
	

	19
	
	
	
	
	
	
	

	20
	
free space of the process image input that does not carry data
	

	…
	
	

	255 (max)
	
	

The process image input of the CM module is a byte array whose application specific use is defined by the layout of the “Process Image: Direction: IN” in the Configuration Studio.

Notation:
· Byte Array: Offset
	description of the process image input as a byte array
· Address, Node-ID, Index und Sub-Index
 	correspond to the same-named columns of the process image in
 	the CM CANopen Configuration Studio	
· Byte Size: byte size of the mapped object Size (bit) / 8
· Nx Node-ID x
· Structure used by the PLC
	description of the process image input as a structure

The process image input is always read from offset 0 up to offset x:
· offset 0 is read first, offset x is transferred last
· unused bytes – bytes that do not carry data – are also transferred if their offset is smaller than / equal to x
· x depends of:
· x + 1 = minimum of
· MLEN input of RDREC which is used to read the process image
· “CANopen input data size“ in “Module parameters” of the hardware configuration of the CM module in TIA Portal

· minimum size of the process image input that covers all data
· rule:
· minimum size = highest “Address“ of Direction: IN
		 + byte size of the object at this address
· consequences
· minimum size <= “CANopen input data size“
· minimum size <= MLEN input of RDREC which is used to
 			 read the process image
· best performance:
· minimum size = MLEN input = “CANopen input data size“

The demo uploads the process image as a structure.

Advantages of the structure:
· changes of the Process Image: Direction: IN in the CM CANopen Configuration Studio during development are much more easily managed by the structure
· mainly the definition of the structure has to be adjusted
· whereas the use of the byte array requires that each offset must be checked and adjusted individually

[bookmark: _Toc481655756]Hardware Configuration of the CM module in TIA Portal

The selected value of “CANopen input data size“
· reflects the minimum byte size that covers all data bytes
· provides the best performance
for the demo layout of the process image input in the Configuration Studio.

[image:]

[bookmark: _Ref477797434][bookmark: _Toc481655757]Description of the used structure

The demo uses the structure ”PIInput_CANopen” that is defined in “PLC Data Types”:

[image:]
[bookmark: _Toc481655758]Upload and update of the process image input data
Upload and update of the process image input data consists of
· GetProcessDataIn [FC1]
	main function of the upload
· function must not be modified by the user
· UpdatePIInData_PLC [FC2]
 updates the process image input data used by the PLC program
· function must be adjusted by the user
· ProcessImageData [DB14]
	DB for the process image data
· the input data structures are automatically updated after
 Compile => Software (rebuild all blocks)
when the structure for the process image input has been modified
· “CANopenProcessImage“.ByteSize_PIInput_CANopen
must be adjusted by the customer

[bookmark: _Toc481655759]ProcessImageData [DB14]
The process image input data are handled by:
· "CANopenProcessImage".CM_PIInput
· data type: ”PIInput_CANopen”
· the read data from the Cm module are copied to this area by RDREC
· its data format is little endian
· "CANopenProcessImage".PLC_PIInput
· data type: ”PIInput_CANopen”
· this area provides the read and converted data for the application
· its data format is big endian
· "CANopenProcessImage".ByteSize_PIInput_CANopen
· byte size of "CANopenProcessImage".CM_PIInput

Hint: CANopenProcessImage [B14]
· DB shall not be optimized
· must be disabled in “Properties” of the DB
· offset of a mapped object in the structure – offset of the structure = 	“Address” of the mapped object in the Process Image:
 		Direction: IN of the Configuration Studio

[bookmark: _GoBack]

[bookmark: _Toc481655760]GetProcessDataIn [FC1]

GetProcessDataIn [FC1]
· uploads the process image input data from the CM CANopen
· updates the process image input data used by the PLC program to control the process

This function must not be modified by the customer.

Parameters of GetProcessDataIn [FC1]:
· Input:
· HW_ID	hardware identifier of the CM CANopen in TIA Portal

Upload of the process image from the CM module:
The process image input is read from the CM module
 	by "RDREC_GetProcessDataIn"()
which is an instance of RDREC:

"RDREC_GetProcessDataIn"(REQ:=TRUE,
 ID:=#HW_ID,
 INDEX:=16#90,
 MLEN:= CANopenProcessImage".ByteSize_PIInput_CANopen
 VALID=>#fValid,
 BUSY=>#fBusy,
 ERROR=>#fError,
 STATUS=>#dwStatus,
 LEN=>#uiLen,
 RECORD:="CANopenProcessImage".CM_PIInput);

Hint: LEN output of "RDREC_GetProcessDataIn"()
LEN output informs about the number of uploaded data bytes
· when BUSY output has switched to FALSE
· and ERROR output = FALSE
· and VALID output = TRUE

[bookmark: _Toc481655761]UpdatePIInData_PLC [FC2]

UpdatePIInData_PLC [FC2]
· is called by GetProcessDataIn [FC1] when the data have been uploaded
· updates the process image input data that are used by the PLC program to control the process
· the updated data are converted to the data format of the PLC

UpdatePIInData_PLC [FC2] must be coded by the user.

Parameters of UpdatePIInData_PLC [FC2]:
· Input:
· uiLen:	number of uploaded data bytes
		= LEN output of "RDREC_GetProcessDataIn"()

The update of the process image input data of the application uses the variables:
· the uploaded “CANopen” data are provided by
	"CANopenProcessImage".CM_PIInput
· the updated “PLC” data are provided by:
	"CANopenProcessImage".PLC_PIInput

[bookmark: _Toc481655762]Adaption of the demo to the user`s application
The adaption of the demo consists of the following steps:
1. adaption of the structure ”PIInput_CANopen” that is defined in “PLC Data Types” to the layout of “Process Image: Direction: IN” in the CM CANopen Configuration Studio

2. adaption of the byte size of the structure ”PIInput_CANopen”
	=> "CANopenProcessImage".ByteSize_PIInput_CANopen

3. adaption of UpdatePIInData_PLC [FC2]

4. adaption of “Module parameters: CANopen input data size”

[bookmark: _Toc481655763]Set Process Data Out

Program group "Set Process Data Out" provides all functionality to process the download of the process image output to the CM CANopen.
The process image input data are handled by:
· "CANopenProcessImage".PLC_PIOutput
· this area provides the process image output data of the application
· its data format is big endian
· "CANopenProcessImage".CM_PIOutput
· this area provides converted data that are written to the CM module
· its data format is little endian
· "CANopenProcessImage".ByteSize_PIOutput_CANopen
· byte size of "CANopenProcessImage".CM_PIOutput
	

Hint:
· it is recommended to differentiate between the downloaded data and the data of the application to avoid inconsistencies caused by the asynchronous download of the process image

Hint: Implementation
· The implementation of “Set Process Data Out” by the CANopen demo is based on the layout of the “Process Image” of the demo project of the CM CANopen Configuration Studio.

[bookmark: _Ref477797518][bookmark: _Toc481655764]Layout of the Process Image

Layout of the “Process Image” in CM CANopen Configuration Studio:

[image:]

Layout of the “Process Image” – Direction: OUT – how it is managed

	Byte Array:
Offset
	“Address“
	Object
	Byte Size
	Structure
used by the PLC

	
	
	Node-ID
	Index
	Sub-Index
	
	

	0
	00000000
	1
	6200
	01
	1
	N1_DigitalOut_1

	1
	00000001
	1
	6200
	02
	1
	N1_DigitalOut_2

	2
	00000002
	2
	6200
	01
	1
	N2_DigitalOut_1

	3
	00000003
	2
	6200
	02
	1
	N2_DigitalOut_2

	4
	00000004
	1
	6411
	1
	2
	N1_AnalogOut_1

	5
	
	
	
	
	
	

	6
	00000006
	1
	6411
	2
	2
	N1_AnalogOut_2

	7
	
	
	
	
	
	

	8
	00000008
	2
	6411
	1
	2
	N2_AnalogOut_2

	9
	
	
	
	
	
	

	10
	unused
	1
	Dummy_Byte10

	11
	unused
	1
	Dummy_Byte11

	12
	0000000C
	1
	6413
	1
	4
	N1_AnalogOutFloat_1

	13
	
	
	
	
	
	

	14
	
	
	
	
	
	

	15
	
	
	
	
	
	

	16
	
free space of the process image output that does not carry data

	…
	

	255 (max)
	

The process image output of the CM module is a byte array whose application specific use is defined by the layout of the “Process Image: Direction: OUT” in the Configuration Studio.

Notation:
· Byte Array: Offset
	description of the process image input as a byte array
· Address, Node-ID, Index und Sub-Index
 	correspond to the same-named columns of the process image in
 	the CM CANopen Configuration Studio	
· Byte Size: byte size of the mapped object Size (bit) / 8
· Nx Node-ID x
· Structure used by the PLC
	description of the process image input as a structure

The process image output is always written to offset 0 up to offset x:
· offset 0 is written first, offset x is transferred last
· unused bytes – bytes that do not carry data – are also transferred when they are located in the downloaded range
· x depends of:
· x + 1 = minimum of
· LEN input of WRREC which is used to write the process image to the CM module
· “CANopen output data size“ in “Module parameters” of the hardware configuration of the CM module in TIA Portal

· minimum size of the process image output that covers all data
· rule:
· minimum size = highest “Address“ of Direction: OUT
		 + byte size of the object at this address
· consequences
· minimum size <= “CANopen output data size“
· minimum size <= LEN input of WRREC which is used to
 			 write the process image
· best performance:
· minimum size = LEN input = “CANopen output data size“

The demo manages the process image as a structure.

Advantages of the structure:
· changes of the Process Image: Direction: OUT in the CM CANopen Configuration Studio during development are much more easily managed by the structure
· mainly the definition of the structure has to be adjusted
· whereas the use of the byte array requires that each offset must be checked and adjusted individually

[bookmark: _Toc481655765]Hardware Configuration of the CM module in TIA Portal

The selected value of “CANopen output data size“
· reflects the minimum byte size that covers all data bytes
· provides the best performance
for the demo layout of the process image output in the Configuration Studio.

[image:]
[bookmark: _Toc481655766]Description of the used structure

The demo uses the structure ”PIOutput_CANopen” that is defined in “PLC Data Types”:

[image:]

[bookmark: _Toc481655767]Download of the process image output data
Download of the process image output data consists of
· SetProcessDataOut [FC3]
	main function of the download
· function must not be modified by the user
· UpdatePIOutData_CM [FC4]
	updates and converts the process image output data that are
 	written to the CM module
· function must be adjusted by the user
· "ProcessImageData"
	DB for the process image data
· the output data structures are automatically updated after
	 Compile => Software (rebuild all blocks)
when the structure for the process image output has been modified
· “CANopenProcessImage“.ByteSize_PIOutput_CANopen
must be adjusted by the customer
· "Ctrl_CM_CANopen".SetPIOut
	structure to control the processing of the download of the process
 	image
· structure must not be modified by the user
[bookmark: _Toc481655768]ProcessImageData [DB14]
The process image output data are handled by:
· "CANopenProcessImage".PLC_PIOutput
· data type: ”PIOutput_CANopen”
· this area provides the data that are used by the application to control the process
· its data format is big endian
· "CANopenProcessImage".CM_PIOutput
· data type: ”PIOutput_CANopen”
· this area keeps the updated and converted data that are written to the CM module
· its data format is little endian
· "CANopenProcessImage".ByteSize_PIOutput_CANopen
· byte size of "CANopenProcessImage".CM_PIOutput

Hint: CANopenProcessImage [B14]
· DB shall not be optimized
· must be disabled in “Properties” of the DB
· offset of a mapped object in the structure = “Address” of the mapped object in the Process Image: Direction: OUT of the Configuration Studio

[bookmark: _Toc481655769]SetProcessDataOut [FC3]
SetProcessDataOut [FC3]
· checks if a download of the process image has been requested by the application
	see: line 54 – 57
· checks if there is a running download of the process image
	see: line 62
· calls UpdatePIOutData_CM [FC4] that updates the data that are written to the CM CANopen
	see: line 74
and updates the state machine of the download
	see: line 78	
· processes the download
	see: line 84 - 92
· checks if the download has been processed
	see: line 95 – 98
· checks the result of the processed download
	see: line 104 - 113
· updates the state machine of the processed download
	see: line 120
· clears the request that indicates the download has been processed
	see: line 126
SetProcessDataOut [FC3] must not be coded by the customer.

Parameters of SetProcessDataOut [FC3]:
· Input:
· HW_ID	hardware identifier of the CM CANopen in TIA Portal
· InOut:
· REQ		TRUE:	process image output shall be written
		FALSE: 	process image shall not be written
		
				hint:
				set flag shall not be reset by the
				application
				REQ is automatically set to FALSE by the
	 		function when the command has been
				processed

The download of the “CANopen” process image output uses the variables:
· data record
	"CANopenProcessImage".CM_PIOutput
see input RECORD of "WRREC_SetProcessDataOut"()

· length of the data record to be transferred in bytes
	“CANopenProcessImage“.ByteSize_PIOutput_CANopen
see input LEN of "WRREC_SetProcessDataOut"()

· state machine of SetProcessDataOut [FC3]
	"Ctrl_CM_CANopen".SetPIOut.fUpdateData

"WRREC_SetProcessDataOut"():
· instance of WRREC that is used by SetProcessDataOut [FC3] to download the process image to the CM CANopen

[bookmark: _Toc481655770]UpdatePIOutData_CM [FC4]
UpdatePIOutData_CM [FC4]
· is called by SetProcessDataOut [FC3] before the data are written to the CM CANopen module
· updates the process image output data that will be written to the CM CANopen
· the updated data are converted to the data format of CANopen

UpdatePIInData_PLC [FC4] must be coded by the user.

Parameters of UpdatePIOutData_CM [FC4]:
· no parameters

The update of the “CANopen” process image output data that are written to the CM CANopen uses the variables:
· the “PLC” data are provided by:
	"CANopenProcessImage".PLC_PIOutput
· the updated “CANopen” data are transferred by
	"CANopenProcessImage".CM_PIOutput

[bookmark: _Toc481655771]Adaption of the demo to the user`s application
The adaption of the demo consists of the following steps:
1. adaption of the structure ”PIOutput_CANopen” that is defined in “PLC Data Types” to the layout of “Process Image: Direction: Out” in the CM CANopen Configuration Studio

2. adaption of the byte size of the structure ”PIOutput_CANopen”
	=> "CANopenProcessImage".ByteSize_PIOutput_CANopen

3. adaption of UpdatePIOutData_CM [FC4]

4. adaption of “Module parameters: CANopen output data size”

[bookmark: _Toc481655772]SDO commands
[bookmark: _Toc481655773]General hint
[bookmark: _Toc465941639][bookmark: _Toc481655774]Processing of a SDO command
The execution of a SDO command needs time
· especially if another device than the CM module is accessed
· especially if a high amount of data is transferred
· due to the use of Siemens SFBs WRREC and RDREC

A started command must be processed until it has signaled finished otherwise the related state machines will be confused and the data will be corrupted:
· the CM module may run into a fatal error situation
=> only power off / on will resolve it
· the PLC will detect a serious error
=> only power off / on will resolve it

Note: outputs of ReadSDO [FB104] / WriteSDO [FB105]
· The outputs are only valid when the output BUSY has switched to FALSE.

Note: SLOT
· SLOT must not be confused with the physical slot of the module
· The CM module internally uses SDO channels
· These SDO channels are not visible in the hardware configuration in TIA portal
· SLOT defines the SDO channel to be used for the requested SDO command

[bookmark: _Toc465941640][bookmark: _Toc481655775]Data format

The data are transferred
· from the device to the PLC according their received byte order
· from the PLC to the device according their byte order in the PLC

The data format is little endian (CANopen format)
· the least significant byte (LSB)
	is transferred first
	is located at low address
· the most significant byte (MSB)
 	is transferred last
	is located at high address

The data format of the PLC is big endian
· the least significant byte (LSB)
	is located at high address
· the most significant byte (MSB)
 	is located at low address

Data must be usually swapped before downloading or after being uploaded:
· overview: standard data types

	Bit size
	data types
	Swap

	
	CANopen
	PLC
	

	8
	INTEGER8 UNSIGNED8
	SInt
USint, Byte
	no

	16
	INTEGER16 UNSIGNED16
	Int
UInt, Word
	yes

	32
	INTEGER32 UNSIGNED32
REAL32
	Dint
 UDInt, DWord
Real
	yes

· not standard data types:
· must be interpreted (read data) / entered (write data) individually

Examples: Write SDO
· the data are transferred to the CM module via a defined byte array
· definition of the byte array:
	“SDO_WriteData” Array[1..x] of Byte

x is set by the customer

see chapter 5.4.1

· example:
the data to be written are provided by "SDO_Data_DB".WrData
 	data type of WrData: 	“SDO_WriteData”
· general:
1. transmitted data byte
	"SDO_Data_DB".WrData.SDO_WriteData [1]
…
n. transmitted data byte
 	"SDO_Data_DB".WrData.SDO_WriteData [n]
· 8 bit value:
 value to be written: 16#12
 => 	"SDO_Data_DB".WrData.SDO_WriteData[1] := 16#12;
· 16 bit value:
 value to be written: 16#1234
 => 	"SDO_Data_DB".WrData.SDO_WriteData [1] := 16#34; // LSB
 	"SDO_Data_DB".WrData.SDO_WriteData [2] := 16#12; // MSB
· 32 bit value:
 value to be written: 16#12345678
 => 	"SDO_Data_DB".WrData.SDO_WriteData [1] := 16#78; // LSB
 	"SDO_Data_DB".WrData.SDO_WriteData [2] := 16#56;
"SDO_Data_DB".WrData.SDO_WriteData [3] := 16#34; "SDO_Data_DB".WrData.SDO_WriteData [4] := 16#12; // MSB

Examples: Read SDO
· the read data are copied to a defined byte array
· definition of the byte array:
	“SDO_ReadData” Array[1.. y] of Byte

y is set by the customer

see chapter 5.3.1

· example:
the read data are copied to „SDO_Data_DB“.RdData
 	data type of RdData: 	“SDO_ReadData”
· general:
1. transmitted / received data byte
	„SDO_Data_DB“.RdData.SDO_ReadData [1]
…
n. transmitted / received data byte
 	„SDO_Data_DB“.RdData.SDO_ReadData [n]
· 8 bit value:
 „SDO_Data_DB“.RdData.SDO_ReadData[1] = 16#12
 => read value: 16#12
· 16 bit value:
 „SDO_Data_DB“.RdData.SDO_ReadData [1] = 16#34; // LSB
 „SDO_Data_DB“.RdData.SDO_ReadData [2] = 16#12; // MSB
 => read value: 16#1234
· 32 bit value:
 „SDO_Data_DB“.RdData.SDO_ReadData [1] = 16#78; // LSB
 „SDO_Data_DB“.RdData.SDO_ReadData [2] = 16#56;
 „SDO_Data_DB“.RdData.SDO_ReadData [3] = 16#34;
 „SDO_Data_DB“.RdData.SDO_ReadData [4] = 16#12; // MSB
=> read value: 16#12345678

Hint: conversion of Real data
· direct conversion of a Real value does not work reliably
therefore the conversion should be processed in 2 steps
· Write SDO
1. convert the Real value to DWord
2. Split the DWord in bytes
· Read SDO
1. convert the read data to DWord
2. convert the DWord to Real

[bookmark: _Toc465941641][bookmark: _Toc481655776]Parallel processed SDO commands

Maximum number of parallel processed SDO commands:
· maximum 4 SDO commands (independent of read or write) can be processed at the same time

· this limitation is set by the S7 1200 although the CM module supports up to 8 SDO channels (see input SLOT of ReadSDO / WriteSDO FBs)

· but each SDO channel can be used (SLOT 0 - 7)

Restrictions for parallel processed SDO commands:
parallel processed SDO commands
· must use different instance FBs
otherwise the processing will be corrupted:
· the CM module may run into a fatal error situation
=> only power off / on will resolve it
· the PLC will detect a serious error
=> only power off / on will resolve it

· must access different CANopen devices
note:
· a CANopen device must support the 1. SSDO
but it must not support additional SSDOs
· the CM module always uses the 1. SSDO of the slave device to run a SDO command
· the CM module checks if the requested SDO command collides with a running SDO command and will not execute it
	=> input NODE of parallel processed ReadSDO / WriteSDO commands
 	 must differ

· must use different slots (SDO channels)
to avoid that the running SDO command will be corrupted

	=> input SLOT of parallel processed ReadSDO / WriteSDO commands
	 must differ

· must not share the same data area
otherwise the data will be corrupted

there is one exception:
· the same data shall be written to different devices

[bookmark: _Toc481655777][bookmark: _Toc465941642]Application note “CANopen manager” mode

SDO command that accesses a slave device should not be performed before the slave has been successfully booted / configured because:
· the configuration of the slave is only consistent when it has been booted successfully
· consequences if the slave has not been booted successfully:
· SDO read command:
read data may be erroneous because they are based on a configuration which is only provided by a successfully booted slave
· SDO write command:
its data will be most probably overwritten or reset to default by the later processed boot slave process

"Get Node & Network Status" or the diagnostic objects 5002h (Configured slaves bit list) and 5004h (Operational slaves bit list) of the CM module provide the status information - booted / configured / operational – of the slaves.
Note:
· only a successfully booted slave can be set to operational.

[bookmark: _Toc481655778]Restrictions “CANopen slave” mode

Accessed CANopen device: CM module
· SDO read command:
	there are not any restrictions:
 the object dictionary of the CM module can be read
· SDO write command
cases:
· CANopen network with a CANopen master:
	The object dictionary of the CM module shall not be 	configured by the PLC to avoid inconsistencies of the over - 	all configuration of the CANopen network
· CANopen network without a CANopen master
· the object dictionary of the CM module can be configured by the PLC
	the customer is responsible for a consistent 	configuration of the CANopen network
· request NMT commands: index 1F82h
· reset node / reset communication / set preoperational and set stopped of the CM module:
	can be requested by the PLC

allowed action:
		index: 	1F82h
 		subindex: 	CANopen node-id of the CM
 				module
 		value: 	 4 set stopped
				 6 reset node
				 7 reset communication
				127 set preoperational
				

· set operational of the CM module:
	can be requested by the PLC
condition:
 	the CM module must be configured as a self-
	starting device:
		1F80h, subindex 0 = 16#00000008

	allowed action:
		index: 	1F82h
 		subindex: 	CANopen node-id of the CM
 				module
 		value: 	5 set operational
· set operational all nodes / the CANopen network:
	can be requested by the PLC
condition:
 	the CM module must be configured as as a
 	slave that shall execute the NMT service start
 	remote node with node-ID set to 0:
		1F80h, subindex 0 = 16#00000002

	allowed action:
		index: 	1F82h
 		subindex: 	80h
 		value: 	5 set operational	

Accessed CANopen device: another device (not the CM module)
Cases:
· CANopen network with a CANopen master:
the object dictionary of other devices shall not be accessed
· to avoid SDO conflicts
only the CANopen master is allowed to initiate a SDO communication
· to avoid inconsistencies of the over - all configuration of the CANopen network

· CANopen network without a CANopen master:
it is possible
· the customer is responsible that it will not cause SDO conflicts
· the customer is responsible for a consistent configuration of the CANopen network

[bookmark: _Toc481655779]SDO Demo
The CANopen demo shows how to run one SDO read / SDO Write command.
The CANopen demo uses
· SLOT 0 (SDO channel 0) for SDO read
· SLOT 1 (SDO channel 1) for SDO write

The CANopen demo must be enhanced to run several parallel SDO read / several parallel SDO write commands.

[bookmark: _Toc481655780]SDO Read
Program group "SDO Read" provides all functionality to process a SDO read command.
The processing of a “SDO read” command is controlled by the structure:
	"Ctrl_CM_CANopen".ReadSDO
This structure holds all information to run a SDO read command and it provides the data area where to save the read data.

The processing of a SDO read command consists of the steps:
1. check if a new SDO read command shall be processed:
if yes:
	initiate and request the processing of the SDO Read command

the check and the initialization is done by
	SDORead_Request [FC6]
that is called in Network 4 of OB1

2. run the requested SDO read command

the requested SDO read command is processed by
 an instance of ReadSDO [FB104]
that is called in Network 5 of OB1

3. analyze the result of the processed SDO Read command and interpret the data

Analysis of the result and interpretation of the read data is done by
	SDORead_InterpretReadData [FC7]
that is called in Network 6 of OB1

[bookmark: _Ref477797117][bookmark: _Ref477797145][bookmark: _Ref477797678][bookmark: _Toc481655781]Description of ReadSDO [FB104]

The ReadSDO FB has been revised to provide more performance.

Input Parameters:

	Name
	Data type
	Description

	REQ
	Bool
	Start request:
- REQ is only relevant when the FB is idle (it does
 not process a requested command)
- idle state and REQ = TRUE
 starts the requested SDO read command

	ID
	HW_IO
	Hardware address for the module. Can be read in TIA Portal.

	SLOT
	Byte
	Defines which SDO channel is used.

This parameter has to be unique for each of the SDO requests running simultaneously.

Valid values: 0 – 7

Note:
This slot defines a SDO channel and must not be confused with the physical slot of the module

	NODE
	Int
	Node-ID of the CANopen module where SDO read is to be performed.

Valid values: 0 - 127

Note:
Node-ID 0 always addresses the CM module even when the CM module has another Node-ID

	INDEX
	Word
	index of the object to be read

	SUB
	Byte
	subindex of the object to be read

	MAX_SIZE
	DInt
	Byte size of the destination area where the read data are saved
 limit of data bytes that can be read and saved

Output Parameters:

	Name
	Data type
	Description

	BUSY
	Bool
	BUSY turns TRUE and stays TRUE until the request is finished, then it returns to FALSE.

Note:
REQ = FALSE in idle state:
=> BUSY	= FALSE
=> RET 	= 0
=> SIZE	= 0

	RET
	UInt
	Error code
see description of RET in chapter 8.1.3 SDO Read/Write

Available when BUSY turns FALSE

	SIZE
	UInt
	Number of bytes that have been read

	DATA
	"SDO_ReadData"
	Data area where to save the read data

Modifications of the revised ReadSDO FB:
· input DB has been removed
· POKE that had to be used to copy the read data to the DB consumes a lot of time
· each parallel processed SDO read command needs its own DB
· input MAX_SIZE has been added
· the revised FB checks if the read data exceed the size of the destination area to avoid that other data will be overwritten
· CountOfElement cannot be used because this function is not supported by PLCs with an older version than V4.0
· output DATA has been added
· DATA replaces the input DB
· note:
· MOVE_BLK_VARIANT cannot be used because this function is not supported by PLCs with an older version than V4.0
· "SDO_ReadData" is defined in PLC data types
	SDO_ReadData	Array[1..n] of Byte

note:
· "SDO_ReadData" must be a byte array
· The customer can only vary n to adjust the byte size to its application
· The project must be compiled when the size of "SDO_ReadData" has been changed

Definition of "SDO_ReadData" by the demo:
· SDO_ReadData	Array[1.."cSDORead_MaxDataSize"] of Byte
· "cSDORead_MaxDataSize"
 		is defined in PLC tags: User constants
· "cSDORead_MaxDataSize"
		is passed to the input MAX_SIZE of ReadSDO FB

[bookmark: _Toc481655782]Structure: "Ctrl_CM_CANopen".ReadSDO
This structure holds all information to run a SDO read command.
The SDO read demo is based on this structure.

Description of the structure ReadSDO:

	Name
	Data type
	Description

	fREQ
	Bool
	flag controls REQ input of ReadSDO FB

	HW_ID
	HW_IO
	hardware identifier of the accessed CM module in TIA Portal

	bSLOT
	Byte
	selected SLOT (SDO channel)

	iNODE
	Int
	CANopen node id of the accessed device

	wINDEX
	Word
	index of the object dictionary

	bSUB
	Byte
	subindex of the object dictionary

	diMaxSize
	Dint
	limit of data bytes that can be read and saved

	fBusy
	Bool
	status of a requested SDO read command:
=> value of output BUSY of ReadSDO FB

	uiRet
	UInt
	result of a processed SDO read command:
=> value of output RET of ReadSDO FB

	uiSize
	UInt
	number of uploaded data bytes
=> value of output SIZE of ReadSDO FB

	Data
	"SDO_ReadData"
	Data area where the read data are saved

[bookmark: _Toc481655783]SDORead_Request [FC6]
This function
· checks if a new SDO read command shall be processed
· initializes the parameters of the SDO command
· requests the processing of the initialized SDO read command

Restriction of the CANopen demo:
· function is not called when there is a running SDO read command because
· the CANopen demo shows how to run one SDO read command
· the CANopen demo is not an example for parallel processed SDO read commands

Note:
· the purpose of this function is to explain how to initialize the inputs of ReadSDO [FB104] to run a SDO read command

Description of the demo function:
· lines 100 – 105
· the demo does not request the processing of a SDO read command
· the customer`s application has to decide if a SDO read command shall be processed

· line 109:
· initialization of the hardware identifier of the accessed CM module
· line 133:
· demo uses SLOT 0 for read SDO command
· demo example reads the error register of the CANopen device with the of the CANopen node id 1
· line 138		: accessed CANopen device
· line 143		: index of the object to be read
· line 148		: subindex of the object to be read
· line 159:
· demo indicates that read SDO command shall be processed

· demo always copies the read data to 	“Ctrl_CM_CANopen“.ReadSDO.Data

· demo passes "cSDORead_MaxDataSize" to the input MAX_SIZE of the ReadSDO FB
=> "Ctrl_CM_CANopen".ReadSDO.diMaxSize is not used

Parameters of SDORead_Request [FC6]:
· Input:
· HW_ID			hardware identifier of the accessed CM
 				CANopen in TIA Portal
· Output:
· RUN_SDOREAD		flag indicates if a SDO read command
 				shall be processed
				TRUE:	process the initialized SDO
 						read command
				FALSE: 	no SDO read command shall
 						be processed

[bookmark: _Toc481655784]SDORead_InterpretReadData [FC7]
This function is called when the requested SDO read command has been processed.

Function
· checks if the requested command has been processed successfully:
· an error has been detected:
lines 54 – 59:
	analysis and reaction must be coded by the customer

· interprets the successfully read data:
· number of read data bytes:
=> Input: 	uiSize
· data area where the read data are saved:
demo:
=> “Ctrl_CM_CANopen“.ReadSDO.Data
· order of reception:
first read/received data byte (LSB):
 "Ctrl_CM_CANopen".ReadSDO.Data.SDO_ReadData [1]
…
last read/received data byte (MSB):
 "Ctrl_CM_CANopen".ReadSDO.Data.SDO_ReadData [#uiSIZE]
· lines 64 – 163:
	comment: how to interpret the data
line 166:
	customer has to code the processing of the read data

· clears the current SDO read request
· line 173

Parameters of SDORead_InterpretReadData [FC7]:
· Input:
· uiRET		result of the processed SDO read command
			=> value of output RET of ReadSDO [FB104]
· uiSIZE		number of read data bytes
			=> value of output SIZE of ReadSDO [FB104]
· InOut:
· ClearReq		clears the current SDO read request

[bookmark: _Toc481655785]SDO Write
Program group "SDO Write" provides all functionality to process a SDO write command.
The processing of a “SDO write” command is controlled by the structure:
	"Ctrl_CM_CANopen".WriteSDO
This structure holds all data and information to run a SDO write command.

The processing of a SDO write command consists of the steps:
1. check if a new SDO write command shall be processed:
if yes:
	initiate and request the processing of the SDO write command

the check and the initialization is done by
	SDOWrite_Request [FC5]
that is called in Network 7 of OB1

2. run the requested SDO write command

the requested SDO write command is processed by
 an instance of WriteSDO [FB105]
that is called in Network 8 of OB1

3. analyze the result of the processed SDO write

Analysis of the result is done by
	SDOWrite_InterpretResult [FC8]
that is called in Network 9 of OB1

[bookmark: _Ref477797183][bookmark: _Ref477797699][bookmark: _Toc481655786]Description of WriteSDO [FB105]

The WriteSDO FB has been revised to provide more performance.

Input Parameters:

	Name
	Data type
	Description

	REQ
	Bool
	Start request:
- REQ is only relevant when the FB is idle
 (it does not process a command)
- idle state and REQ = TRUE
 	starts the requested SDO write
 	command

	ID
	HW_IO
	Hardware address for the module. Can be read in TIA Portal.

	SLOT
	Byte
	Defines which SDO channel is used.

This parameter has to be unique for each of the SDO requests running simultaneously.

Valid values: 0 – 7

Note:
This slot defines a SDO channel and must not be confused with the physical slot of the module

	NODE
	Int
	Node-ID of the CANopen module where SDO write is to be performed.

Valid values: 0 - 127

Note:
Node-ID 0 always addresses the CM module even when the CM module has another Node-ID

	INDEX
	Word
	index of the object to be written

	SUB
	Byte
	subindex of the object to be written

	DATA
	"SDO_WriteData"
	Data area where to get the data to be written

	DATASIZE
	UInt
	Number of bytes to be written.

Output Parameters:

	Name
	Data type
	Description

	BUSY
	Bool
	BUSY turns TRUE and stays TRUE until the request is finished, then it returns to FALSE.

Note:
REQ = FALSE in idle state:
=> BUSY	= FALSE
=> RET 	= 0
=> SIZE	= 0

	RET
	UInt
	Error code
see description of RET in chapter 8.1.3 SDO Read/Write

Available when BUSY turns FALSE

Modifications of the revised WriteSDO FB:
· input DB has been removed
· PEEK that had to be used to copy the data to be written consumes a lot of time
· each parallel processed SDO read command needs its own DB
· input DATA has been added
· DATA replaces the input DB
· Note:
MOVE_BLK_VARIANT cannot be used because this function is not supported by PLCs with an older version than V4.0
· the data can be copied by MOVE_BLK which is much more faster than the use of PEEK
· "SDO_WriteData" is defined in PLC data types
	SDO_WriteData	Array[1..n] of Byte

note:
· "SDO_WriteData" must be a byte array
· The customer can only vary n to adjust the byte size to its application
· The project must be compiled when the size of “SDO_WriteData" has been changed

Definition of "SDO_WriteData" by the demo:
· SDO_WriteData	Array[1.."cSDOWrite_MaxDataSize"] of Byte
· "cSDOWrite_MaxDataSize"
 		is defined in PLC tags: User constants

[bookmark: _Toc481655787]Structure: "Ctrl_CM_CANopen".WriteSDO
This structure holds all information to run a SDO write command.
The SDO write demo is based on this structure.

Description of the structure WriteSDO:

	Name
	Data type
	Description

	fREQ
	Bool
	flag controls REQ input of WriteSDO FB

	HW_ID
	HW_IO
	hardware identifier of the accessed CM module in TIA Portal

	bSLOT
	Byte
	selected SLOT (SDO channel)

	iNODE
	Int
	CANopen node id of the accessed device

	wINDEX
	Word
	index of the object dictionary

	bSUB
	Byte
	subindex of the object dictionary

	uiSize
	UInt
	number of data bytes to be written

	fBusy
	Bool
	status of a requested SDO write command:
=> value of output BUSY of WriteSDO FB

	uiRet
	UInt
	result of a processed SDO write command:
=> value of output RET of WriteSDO FB

	Data
	"SDO_WriteData"
	data area where to get the data to be written

[bookmark: _Toc481655788]SDOWrite_Request [FC5]
This function
· checks if a new SDO write command shall be processed
· initializes the parameters of the SDO command
· enters the data in the data area
· requests the processing of the initialized SDO write command

Restriction of the CANopen demo:
· function is not called when there is a running SDO write command because
· the CANopen demo shows how to run one SDO write command
· the CANopen demo is not an example for parallel processed SDO write commands

Note:
· the purpose of this function is to explain how to initialize the inputs of WriteSDO [FB105] to run a SDO write command

Description of the demo function:
· lines 174 – 179
· the demo does not request the processing of a SDO write command
· the customer`s application has to decide if a SDO write command shall be processed

· line 182:
· initialization of the hardware identifier of the accessed CM module
· line 208:
· demo uses SLOT 1 for write SDO command
· demo example clears the pre-defined error field of the CANopen device with the of the CANopen node id 2
· line 213		: accessed CANopen device
· line 218		: index of the object to be written
· line 223		: subindex of the object to be written
· line 235
demo enters the data that shall be written in
	"Ctrl_CM_CANopen".WriteSDO.Data.SDO_WriteData[]
· order of transmission:
first transmitted data byte (LSB):
 "Ctrl_CM_CANopen".WriteSDO.Data.SDO_WriteData[1]
…
last transmitted data byte (MSB):
 "Ctrl_CM_CANopen".WriteSDO.Data.SDO_WriteData[number bytes]
· line 240
· demo updates the number of data bytes to be written
· line 246
· demo requests the processing of the initialized SDO write command

Parameters of SDOWrite_Request [FC5]:
· Input:
· HW_ID			hardware identifier of the accessed CM
 				CANopen in TIA Portal
· Output:
· RUN_SDOWRITE	flag indicates if a SDO write command 				shall be processed
				TRUE:	process the initialized SDO
 						write command
				FALSE: 	no SDO write command shall
 					 	be processed

[bookmark: _Toc481655789]SDOWrite_InterpretResult [FC8]
This function is called when the requested SDO write command has been processed.

Function
· checks if the requested command has been processed successfully	
· the command has been processed successfully
line: 26 - 27
· an error has been detected:
	lines 29 – 34:
	analysis and reaction must be coded by the customer

· clears the current SDO write request
· line 41

Parameters of SDORead_InterpretReadData [FC7]:
· Input:
· uiRET		result of the processed SDO write command
			=> value of output RET of WriteSDO [FB104]
· InOut:
· ClearReq		clears the current SDO write request

[bookmark: _Toc481655790]Get Node & Network Status
The demo also provides an example how “Get Node & Network Status” can be processed.

Program group "Get Node & Network Status" provides all functionality to process a Get Node & Network Status command.
The processing of a “Get Node & Network Status” command is controlled by the structure:
	"Ctrl_CM_CANopen".GetNNStatus

“Get Node & Network Status” command is processed and analysed by 	GetNodeNetworkStatus [FC18]
that is called in Network 1 of OB1.

[bookmark: _Toc481655791]Structure: "Ctrl_CM_CANopen".GetNNStatus
This structure holds all information to run a “Get Node & Network Status” command.
The demo is based on this structure.

Description of the structure GetNNStatus:

	Name
	Data type
	Description

	fREQ
	Bool
	TRUE:	run “Get Node & Network
 		Status” command
FALSE: 	do not run “Get Node &
 		Network Status” command

	abData
	Array[0..131] of Byte
	data area holds all diagnostic information

hint:
do not change the data type of abData
· it covers all data

· GetNodeNetworkStatus [FC18]
is based on this definition:
 see local Constant:
	#cByteSizeRecord

· AnalyseNodeNetworkStatus [FC14] is based on this definition

[bookmark: _Toc481655792]GetNodeNetworkStatus [FC18]
This function
· checks if a “Get Node & Network Status” command shall be processed
	see: line 34 - 38
· processes the requested command
	see: line 43 - 52
· checks if the command has been processed
	see: line 56 - 59
· checks if the command has been successfully processed
	see: line 65 - 76
· calls AnalyseNodeNetworkStatus [FC14] when the command has been processed and the diagnostic data are valid
	see: line 69
· clears the request: run “Get Node & Network Status” command
	see: line 88

Parameters of GetNodeNetworkStatus [FC18]:
· Input:
· HW_ID	hardware identifier of the accessed CM CANopen in
 		TIA Portal
· InOut:
· REQ		TRUE: run “Get Node & Network Status”

		hint:
			set flag shall not be reset by the application

			REQ is automatically set to FALSE by the
	 	function when the command has been
			processed

[bookmark: _Toc481655793]AnalyseNodeNetworkStatus [FC14]
This function
· is called by GetNodeNetworkStatus [FC18] when the command has been processed and the diagnostic data are valid
· analyses the uploaded diagnostic information
· valid data bytes:
	"Ctrl_CM_CANopen".GetNNStatus.abData[0]
	…
	"Ctrl_CM_CANopen".GetNNStatus.abData[#uiLen - 1]
· reaction must be coded by the customer
· provides a detailed description of “Get Node & Network Status”
discusses the possible reasons of errors
lists where to get additional information
proposes reactions to errors
	see: line 18 – 380

see also chapter 6.1.4

· provides a rough demo how to analyse the data
 	see: line 385 - 455

Parameters of GetNodeNetworkStatus [FC18]:
· Input:
· uiLen		byte size of the uploaded diagnostics

[bookmark: _Ref477966851][bookmark: _Toc481655794]Discussion of the diagnostic information
The discussion of the diagnostic information
· provides more details than the user manual
· lists the events that cause a specific diagnostic event
· lists diagnostic objects of the CM module that provide more / additional information

[bookmark: _Toc481655795]General hints
“General hints” clarifies some terms that are used to discuss the diagnostic information.

Notation: slave device / unexpected device
· slave device or slave:
· device has been entered as a CANopen slave in the Project Explorer of the CM CANopen Configuration Studio
· Bit 0 of its NMT Slave configuration is set

 	note:
· each slave device is marked in the diagnostic object 5001h

· unexpected device:
· device has not been entered as a CANopen slave in the Project Explorer of the CM CANopen Configuration Studio
· Bit 0 of its NMT Slave configuration is not set

 	note:
· unexpected devices are not marked in the diagnostic object 5001h
· a present unexpected device is marked in the diagnostic object 5003h

Note: Boot slave process
· The boot slave process is used by a CANopen Manager mode
1. to check if a device is present (slave device and unexpected device)
2. to check the identity of the slave device
	see below: Note: identity error
3. to restore the default configuration
condition:
· Bit 7of its NMT Slave configuration must be set
· the value of its Restore Configuration must not be 0
4. to configure the slave with its generated configuration provided by the object
 	1F22h, subindex CANopen node id of the booted slave
	see chapter 7.2.2 of the user manual
	see below: Note: configuration of the slave has failed
5. to start the error control service for the slave
6. to update the CANopen NMT state of the slave
hint:
the slave is set to operational if all subsequent conditions are true
· the CM module is allowed to start the slaves:
	Bit 3 of the NMT Startup must not be set
· the CM module is operational or Bit 2 of the NMT Startup is not set
· all mandatory slaves have been booted successfully

· CANopen network initialization
the CM module processes at least one boot slave process for each CANopen node id
· Repetition of a failed boot slave process
· slave device:
failed boot slave process is only repeated if Bit 2 of its NMT Slave configuration is set
otherwise it must be requested by the PLC:
	see 1F25h, subindex CANopen node id of the booted slave
	see chapter 7.2.2 of the user manual
· unexpected device:
the boot slave process of an unexpected device is repeated until the unexpected device has been removed from the CANopen network or when it has been configured as a slave

Note: identity error
· The CM module only checks the identity objects of a slave that has been selected for the slave in the CM CANopen Configuration Studio.

	see CM CANopen Configuration Studio:
 		Network Management Configuration
 Slave Assignment
 	 Device Type, Vendor-ID, Product Code, Revision
 		 Number, Serial Number of the slave

· An identity object is checked if it has been selected and its value is not equal to 0 (don`t care).
· Device Type, Vendor-ID, Product Code and Serial Number:
	must match exactly
· Revision Number:
· major Revision Number (bits 16 - 31) must match exactly
· read minor revision number (bits 0 - 15) must be greater than or equal to the expected on
· index 500Ah: identity error bit list
	lists the slaves that identity do not match

Note: configuration of the slave has failed
· CM CANopen Configuration Studio generates an individual configuration for each slave device that has been entered in the “Project Explorer”
· The generated configuration only contains the configuration that differs from the default configuration of the EDS
· The generated configuration of a slave is stored in
	1F22h, subindex CANopen node id of the slave
on the CM module
· Each slave device is configured with its configuration by its boot slave process:
	see above: Note: Boot slave process
· the configuration of a slave will fail
· if the configuration
· contains an object that is not supported by the slave
· contains an object that is read only
· contains a value that is out of range
· maps on object that is not mappable

	these errors are caused by an EDS file that does not describe the
 	real device correctly and completely

	action:
· ask the manufacturer for the correct EDS

· if the slave has not been implemented according the CANopen
specification

action:
· ask the manufacturer for a FW update

· realistic solution:
· manufacturer does not provide a revised EDS / FW update
· the EDS has to be revised by the customer:
	analyse the CAN bus traffic and adjust the EDS step by step

Note: slave is configured by its specific configuration tool
· EDS:
· EDS file must be adjusted so it describes its individual configuration as the default configuration

· Bit 7 of its NMT Slave configuration
· must not be set
· set bit requires the restoring of the default configuration which will delete the individual configuration

Note: error control event
Error control event covers
· failure of the boot slave process of a slave
possible reasons:
· slave is missing
· identity error of a slave
· the configuration of the slave has failed
· erroneous behavior of the slave
· heartbeat timeout
slave has not transmitted its heartbeat within the configured heartbeat consumer time

condition:
	slave must be entered in the consumer heartbeat list with a
 	consumer heartbeat time > 0

	see CM CANopen Configuration Studio:
 		Error Control Configuration
 	 Consumer Time list of the CM module

· lifetime timeout
slave is guarded and has not responded within its lifetime

condition:
	slave must be guarded by the CM module
 	Guard Time · Retry Factor > 0

	see CM CANopen Configuration Studio:
 		Error Control Configuration
 Node Guarding
 	 Guard Time and Retry Factor of the slave

· heartbeat / guarding response reports another CANopen NMT state than the expected one
e.g.:
	CM module expects operational
 	but the slave reports pre-operational

· unexpected bootup message of a slave

· a device is present that has not been configured as slave

Note: CANopen slave mode
· the diagnostic objects 5003h – 5006h are also updated by the CM module running in CANopen slave mode
· condition:
	only devices that has been entered in the consumer heartbeat list
 	of the CM module with a consumer heartbeat time > 0 are
 	displayed in these lists
· additional condition: 5003h
	the monitoring of the heartbeat of another device is started with
 	the first reception of the heartbeat message
· the objects 5004h – 5006h display the CANopen NMT status (operational, pre-operational, stop) reported by the received heartbeat messages

[bookmark: _Toc481655796]Get Node & Network Status: Message error
Message error must be checked first.
If message error reports an error (message error <> 0)
· analysis of the message error and reaction must be coded by the customer
· all subsequent diagnostic data are irrelevant / invalid
· see chapter 8.1.4 of the manual
	Contents of parameter RECORD: Offset: 0
· demo
	"Ctrl_CM_CANopen".GetNNStatus.abData[0]

[bookmark: _Toc481655797]Get Node & Network Status: CANopen Module mode
If the reported operating mode is not the expected one:
· select the correct operating mode in the hardware configuration of the CM module
· download the new hardware configuration to the PLC
· power off / on the PLC
· see chapter 8.1.4 of the manual
	Contents of parameter RECORD: Offset: 3
· demo
	"Ctrl_CM_CANopen".GetNNStatus.abData[3]
· note: demo
	demo expects that the CM module is running as CANopen
 	Manager
		see constant #cOperatingMode

[bookmark: _Toc481655798]Get Node & Network Status: Error flags (module)
This chapter discusses the single error events
· see chapter 8.1.4 of the manual
		Contents of parameter RECORD: Offset: 1
· demo
		"Ctrl_CM_CANopen".GetNNStatus.abData[1]

Bus off (bit 0):
· possible reasons:
· short cut of the CAN cable
· wrong mounting of the CAN connection
· the CAN network is not correctly terminated
· the CAN network must have a line topology
· the cable length is too long for the selected CAN baudrate
· the CAN baudrate selected in the module parameters of the CM
module is wrong
· a CANopen device is running with a wrong CAN baudrate

· note:
	the CM module automatically retries to recover form bus off

· action:
 		check the above mentioned possible errors

Configuration download error (bit 1):
· the download of the CANopen configuration to the CM module has failed:
the configuration of the CM module is invalid
· action:
 		download the CANopen configuration to the CM

Parameterization error (bit 2):
· the actual CANopen network does not match the configured / expected CANopen network:
possible reasons:
· boot slave process of a slave has failed:
possible reasons:
- slave is missing
- identity error of a slave
- download of the configuration to a slave has failed
· error control event of a slave
· an unexpected device is present
· action:
· analyse the status of each CANopen node id: 1 - 127
node id 1 "Ctrl_CM_CANopen".GetNNStatus.abData[5]
…
node id 127 "Ctrl_CM_CANopen".GetNNStatus.abData[131]

note:
	the status of the CM module is also displayed

NVS error (bit 3):
· the saved CANopen configuration is corrupted:
· the CM module does not communicate with the CANopen network
RUN - CANopen LED: off
ERR - CANopen LED: blinking with 1Hz

· action:
· power off / on the PLC
· fatal error log can be read by SDO: index 5500h, subindex 1
· inform HMS and provide the read fatal error log

[bookmark: _Toc481655799]Get Node & Network Status: Error flags (network)
This chapter discusses the single error events
· see chapter 8.1.4 of the manual
		Contents of parameter RECORD: Offset: 2
· demo
		"Ctrl_CM_CANopen".GetNNStatus.abData[2]

Network not ready (bit 0):
· possible reasons: CANopen Manager mode
· CM module is not operational
- network scan and initialization has not been finished yet
	see also 5000h, subindex 2
- the CM module is disconnected from the CAN bus
	see object 5000h, subindex 1: bit 13
- error control event of a mandatory slave
 - neither the CM module nor the network will be set to
 operational until each mandatory slave has been booted
 successfully
 - error control event of a mandatory slave when the network was
 operational:
 the reaction to this event depends of the configuration of the
 NMT Startup in the CM CANopen Configuration Studio
· no slave is operational
- network scan and initialization has not been finished yet
	see also 5000h, subindex 2
- slave(s) is (are) missing
- no slave has been booted successfully
· the CANopen state of the CM module has been changed by
command
· PLC is stopped
	
	 action:
· "CANopen Node status" CANopen NMT status of the CM module:
	"Ctrl_CM_CANopen".GetNNStatus.abData[4]
· check bit 1: node error control event of Error flags (network)
· analyse the status of each CANopen node id: 1 - 127
node id 1 "Ctrl_CM_CANopen".GetNNStatus.abData[5]
…
node id 127 "Ctrl_CM_CANopen".GetNNStatus.abData[131]

· additional diagnostic information is provided by the objects
	5xxxh
see also chapter 7.3 Manufacturer Specific Objects
· possible reasons: CANopen slave mode
· CM module is not operational
- the CANopen master has not set the CM module to operational
 or has requested a not operational state
- reaction to an error event:
 the reaction depends of the configuration of the error behavior
 object: index 1029h:
 	see chapter 7.2 of the user manual

· action: 	
· "CANopen Node status" CANopen NMT status of the CM module:
	"Ctrl_CM_CANopen".GetNNStatus.abData[4]
· additional diagnostic information is provided by the objects
- 5000h: subindex 1 / 2
- 50003h
- 50004h - 5006h
 note:
 		only devices that has been entered in the consumer
 		heartbeat list of the CM module with a consumer
		heartbeat time > 0 are displayed in these lists

 see chapter 7.3 of the user manual

Node error control event (bit 1):
· possible reasons: CANopen Manager mode
· error control event of a slave device
· CM module is disconnected from the CANopen network
	see object 5000h, subindex 1: bit 13

action:	
· analyse the status of each CANopen node id: 1 - 127
node id 1 "Ctrl_CM_CANopen".GetNNStatus.abData[5]
…
node id 127 "Ctrl_CM_CANopen".GetNNStatus.abData[131]

note:
	the status of the CM module is also displayed

additional diagnostic information is provided by the objects
	5xxxh
see also chapter 7.3 Manufacturer Specific Objects

· possible reasons: CANopen slave mode
· timeout of the reception of the heartbeat of another CANopen device that is to be monitored:
	see index 1016h described in chapter 7.2 of the user 		manual
· CM module is disconnected from the CANopen network
	see object 5000h, subindex 1: bit 13

 	action:
· additional diagnostic information is provided by the objects
· object 5003h
· object 5000h, subindex 1: bit 13

Guarding error (bit 2):
This bit is only relevant for the CANopen slave mode.
It reports a timeout of the guarding by the CANopen master
· condition:
· the master had started to guard the CM module
· lifetime > 0
lifetime = life time factor (index 100Dh) · guard time (index 100Ch)
· guarding request of the CANopen master has not been received within the configured lifetime

[bookmark: _Toc481655800]Get Node & Network Status: CANopen Node Status
CANopen Node Status informs about the current CANopen NMT status of the CM module
· see chapter 8.1.4 of the manual
		Contents of parameter RECORD: Offset: 4
· demo
		"Ctrl_CM_CANopen".GetNNStatus.abData[4]

Node NMT status:
· NMT State Operational
	the CM module is operational and can exchange process image
 	data with PDOs
· NMT State Unknown
	CM module has not finished its CANopen initialization after power
 	on
· Reset Node / Reset Communication
	the CM module is processing a reset command that has been
 	requested by
		the PLC (CANopen manager / slave mode)
 		or by the CANopen master (CANopen slave mode)
· NMT Pre-operational
possible reasons:
· CANopen Manager mode:
· the CANopen network initialization process is running
· the CM module is not allowed to set itself / the network to operational because a mandatory slave has not been booted successfully
· the CM module has been set to pre-operational by the PLC
· CANopen slave mode:
· the CANopen master has not set the CM module to operational yet
· the CANopen master has set the CM module to preoperational
· the CM module has entered this state due to an error
	see index 1029h
 described in chapter 7.2 of the user manual

· NMT State Stopped
possible reasons:
· CANopen Manager mode:
· the CM module has set the CANopen network and itself to stopped due to an error control event of a mandatory slave
condition:
- network initialization process has been finished
- set Bit 6 of the NMT Startup configuration
· the CM module has been set to stopped by the PLC
· CANopen slave mode:
· the CANopen master has set the CM module to stopped
· the CM module has entered this state due to an error
	see index 1029h
 described in chapter 7.2 of the user manual

additional diagnostic information are provided by
· see Error flags (network)
· object 5000h, subindex 1 - 4

[bookmark: _Toc481655801]Get Node & Network Status: Network status
Network status provides individual diagnostic and CANopen NMT status information for each CANopen node id: node id 1 - 127.

The CM module is also displayed.

Network status is only available in CANopen Manager mode.
· see chapter 8.1.4 of the manual
		Contents of parameter RECORD: Offset: 5
· demo
		"Ctrl_CM_CANopen".GetNNStatus.abData[5 - 131]
· diagnostic and CANopen NMT status of node id i
		"Ctrl_CM_CANopen".GetNNStatus.abData[4 + i]

Node State: bits 0 – 3
· NMT State Unknown
possible reasons
· the CANopen network initialization is running and the CM module has not tried to boot the slave yet
	see also object 5000h, subindex 2

· the slave device has been booted successfully but it is not controlled by the CM module:
neither by consuming its heartbeat nor by guarding
	see also object 5002h

· the slave device is present but its boot slave process fails

	see 		Bit 4: Configuration Error bit
	see also object 5003h
			additional: object 5009h, 500Ah

note:
	failed boot slave process is repeated when
 		Bit 2 of the slave`s NMT Slave configuration
	is set
 	and the NMT status of the CM module is not stopped

· the slave is present but it is not booted automatically

the CM module does not automatically starts a boot slave process of a slave device
· after an error control event of the slave
· after a hot swap of the slave
· belated connection of the slave
if Bit 2 of the slave`s NMT Slave configuration is not set.

its boot slave process must be requested by
 	1F25h, subindex slave`s node id
	see chapter 7.2 of the user manual

· unexpected device is not present

		
· NMT State Stopped / Operational / Pre-operational
condition:
· slave device has been booted successfully
· slave device is controlled by the CM module
either by consuming its heartbeat or by guarding

note:
· only a slave that has been booted successfully can be set to operational

· CANopen Device missing
possible reasons:
· slave device is missing / not connected

hint:
missing can be also caused by a reset node command that is written to the slave due to
	- heartbeat timeout / guarding timeout
	- heartbeat / guarding response has reported another
 	 CANopen NMT state than the expected one
	- the configuration of the slave has failed
and the slave has not finished its CANopen initialization before the CM module has started to boot the slave
the slave device should be detected as present after some retries of the boot slave process

· CM module is disconnected from the CANopen network
	see also object 5000h, subindex 1: ALONE (bit 13)

Configuration Error bit (bit 4):
· possible reasons:
· identity error
	see also the diagnostic object 500Ah
· concise DCF error
the configuration of the slave has failed
	see also the diagnostic object 5009h
· hint:
the boot slave process of a slave can also fail although neither an identity error nor a concise DCF error has been detected.
· e.g.:
slave device has to restore its default configuration
but it does not support the object 1011h
and slave reports another error as “Object does not exist in the object dictionary” or “Sub-index does not exist”
· such errors are not indicated by bit 4
· but the slave device is marked in the diagnostic object 5003h
· such errors can be only solved by the analysis of the CAN trace

Node mandatory bit (bit 5):
· device is configured as mandatory or optional slave

Unexpected device (bit 7):
· set bit: device is present but it is not configured as a slave in the CM CANopen Configuration Studio
[bookmark: _Toc481655802]CM CANopen Configuration Studio
This chapter clarifies some misunderstandings and emphasizes an overlooked feature of the Configuration Studio.

[bookmark: _Toc481655803]Exchange of process image data
This chapter clarifies some misunderstandings of the exchange of the process image between the CM CANopen and the CANopen network.

Exchanged process image data:
· only the application objects that are selected in “Application Objects” are exchanged between the CM CANopen and the CANopen network

Transmission type of a PDO:
· the transmission type of a PDO depends of the transmission type of its mapped objects
· the transmission type of an application object is individually selected in “Application Objects”

[image:]

· the generated PDO configuration is based on the selected application objects and their individual transmission type
· only application objects with the same transmission type are mapped in a PDO
Hint: 	change of the transmission type of a PDO in “PDO Mapping
 	Parameters”
· PDO is not locked
· the modified transmission type is ignored
· PDO is locked
· the transmission type of its mapped objects in “Application Objects” differs from the transmission type of the PDO
· the locked PDO is assumed to be used to transfer process data between slaves and not between the CM CANopen and the slave
· calculate configuration has to look for an alternative configuration for the process data exchange between the CM CANopen and the slave

Hint: Inhibit Time (100µs), Event Timer (ms), Transmission Rate
· Inhibit Time (100µs), Event Timer (ms), Transmission Rate are additional attributes of a PDO to control its transmission rate
· these parameters are configurable in “PDO Mapping Parameters”

Hint: change of the CAN-ID of a PDO in “PDO Mapping Parameters”
· PDO is not locked
· the modified CAN-ID is ignored
· PDO is locked
· work around for all version 2.1.xx of the Configuration Studio
· close the Configuration Studio
· start the Configuration Studio
· calculate configuration

otherwise the CAN-ID of the corresponding PDO of the CM CANopen is not updated
· CM CANopen and the slave will not exchange process data with this PDO

Hint: Process Image Size (OUT) (byte), Process Image Size (IN) (byte)
· CM CANopen configuration Studio will use the values entered here to check if the byte size of the selected application objects exceeds the entered range
· the actual maximum byte size of the process image input / output is set in the hardware configuration of the CM CANopen in TIA Portal
· Process Image Size (OUT) (byte) sets the limit for: Allocated process Image Size IN
· Process Image Size (IN) (byte) sets the limit for: Allocated process Image Size OUT
[bookmark: _Toc481655804]“Device Parameters” tool window
The “Device Parameters” tool window provides access to parameter objects of the CANopen device that is currently selected in the “Project Explorer” tool window.
Parameters that may require specific initialization with an alternative parameter value instead of the default value after power on / reset of the slave can be configured here:
· the slave will be also configured with these modified values by the CM CANopen
· the PLC program must not configure these parameters

CM CANopen Configuration Studio generates an individual configuration for each slave device that has been entered in the “Project Explorer”:
· these slave configurations are also downloaded to and stored on the CM CANopen
· the CM CANopen will automatically configure each slave with its specific stored configuration
· during the CANopen network initialization
· after an error control event
· condition:
		Bit 2 of its NMT Slave configuration must be set
· after hot swap of the device / exchange of a faulty device
· condition:
		Bit 2 of its NMT Slave configuration must be set

The slave specific configuration contains
· the configuration that differs from the default configuration in its EDS
· the configuration of the PDOs
· the configuration of the communication parameters
· valid / not valid
· CAN-ID
· transmission type
· inhibit time (if supported)
· event timer (if supported)
· the configuration of the mapping
· number mapped objects
· mapped objects
· the configuration of the sync objects (if supported)
· sync producer / consumer
· sync cycle time
· the configuration of the heartbeat producer time (if supported)
· the configuration of the heartbeat consumer list (if supported)
· the configuration of the guard time / life time factor (if supported)
· the configuration of additional objects whose configuration has been changed in “Device Parameters”

example for a modified value in “Device Parameters”:

“Analogue input global interrupt enable” (object 6423h) is disabled by default but it should be enabled before the slave enters operational

[image:]

[bookmark: _Toc481655805]Status LEDs
This chapter describes the single LED patterns to avoid misinterpretation.

Hint: Double Flash
· double flash covers much more events than “a nodeguard event or a heartbeat event has occurred”
· CANopen slave mode:
· heartbeat timeout of a device whose heartbeat is monitored
· timeout of being guarded by the CANopen master
· CANopen Manager mode:
double flash indicates the error control events
· failure of the boot slave process of a slave
· slave is missing
· identity error of a slave
· the configuration of the slave has failed
· nodeguard event or a heartbeat event
· timeout
· heartbeat / guarding response reports another CANopen NMT state than the expected one
e.g.:
		CM module expects operational
 		but the slave reports pre-operational
· unexpected / unforced bootup message of a slave
· a device is present that has not been configured as slave
· the CM module is disconnected from the CANopen network

Note: priority of the indicated error events
· the highest prior error is indicated if there are several errors
· order of priority

	Priority
	Indication
	Error event

	highest
	1 Hz
	fatal error

	decreasing
priority
	On
	bus off

	
	Triple flash
	sync timeout

	
	Double flash
	error control event

	
	Single flash
	warning limit reached in CAN controller

	lowest
	Blinking
	general configuration error
CANopen initialization of the CM CANopen was not successful

[bookmark: _Toc481655806]Indicator states and flash rates
[image:]

	Copyright IXXAT Automation GmbH
	6
	<Product Name> Manual, Version

	Copyright HMS Technology Center Ravensburg GmbH
	39
	CM CANopen, CANopen Application, V1.0

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image1.png

